Optimized high-speed all-optical 2-bit ADCbased on two-dimensional photonic crystal nanoresonators

Appl Opt. 2021 Jan 1;60(1):60-66. doi: 10.1364/AO.410157.

Abstract

In the present paper, a new 2-bit analog-to-digital converter (ADC) was designed and simulated by using 2D photonic crystal (PC) structures to create a relatively faster and smaller structure. For this purpose, a PC structure with a square lattice and silicon rods in the air bed was used. In the proposed structure, a combination of an optical filter with a linear waveguide, optical nanoresonators, and interference effects was used to create a 2-bit ADC. To create a structure in optimal conditions with maximum output optical power, the size of nanoresonators was scanned to reach the best size. The proposed structure operated at the operating wavelength of 1550 nm with a response time of about 1.63 ps, a sampling rate of about 613 GS/s, and a resolution sampling rate product (RSRP) value of about 2453 ks. Additionally, the size of the structure was about 194µm2, which is small compared with other structures proposed in this field; it also enjoys high simplicity and flexibility like structures with other functions, including 4-bit converters. The amount of power used to create different logic states was at the rate of mWm2, which is much lower than the amount used in similar structures and is achieved using nonlinear effects and materials. Therefore, due to the excellent results obtained, this structure is recommended to be used in optical integrated circuits. The plane wave expansion method was used to extract the photonic bandgap, and the finite-difference time-domain method was used to obtain the results related to the output spectrum of the designed structures.